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Abstract

The future design of high performance buildings is expected to involve more active
facade technologies, acting in intelligent collaboration with the HVAC and lighting sys-
tems to produce comfortable indoor environments with reduced energy consumption.
Integrated control of active facade systems and HVAC is challenging, particularly with
thermally-massive HVAC systems such as radiant floors and ceilings. This paper de-
scribes methods for devising near-optimal controllers for such integrated systems, allow-
ing for any arbitrary level of complexity in the facade system. An offline-optimization
approximation to model predictive control is used with a model consisting of a reduced-
order approximation of the zone and HVAC thermal properties and an interpolation
grid of the daylight and solar gains attributes of the facade in its various possible
states. The optimization over the 24-hour prediction horizon is split into two levels,
with GenOpt used at the top level to deal with the complexity of the facade, alongside
a linear programming solution to the chilled slab control. The model can be calibrated
to match monitored data, or some combination of whole-building energy modeling and
Radiance outputs. To test the methods and to estimate energy savings potential, case
studies were performed with a calibrated model based on an EnergyPlus ASHRAE
90.1-2010 office building, modified to use radiant slabs and operable Venetian blinds
(either internal or external) or electochromic glazing. Results are shown for four US
climates. Further research is discussed.
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1 Introduction

1.1 Motivations: The challenges and potential benefits of integrated
facade-HVAC control

In all buildings, the envelope, lighting and HVAC systems work together to create an in-
door environment that is different from the outdoors. The envelope is usually a relatively
static, passive part of this process. In pushing towards very low energy buildings that
meet contemporary comfort expectations, researchers and designers are increasingly con-
sidering envelope technologies that play a more active role. Intelligent control strategies
for integrated systems of active facade, HVAC and lighting are essential not only for their
effective implementation, but must also be considered within their design; the design of
system components and system control go hand in hand, particularly for more innovative
systems.

However, there are challenges associated with the integrated control of facade-HVAC-
lighting systems, particularly in the case of thermally massive HVAC systems. For example,
what does the optimal control response of an integrated shading and radiant cooling system
look like? How much pre-cooling should happen and when, in order to cool less often when
the ambient temperature is high and thus the cooling COP is low? And how should the
shading system work in conjunction with this pre-cooling - when should it increase shading
to decreasing cooling load but increase lighting load? The answers to such questions, it
seems, are very much dependent on the configuration and properties of the building under
consideration. Can we thus devise tools and techniques that can be used to provide custom
answers to these questions for any particular building? How much energy savings potential
is there with optimal integrated control of facade and HVAC systems?

This paper attempts to address these questions, if only incompletely. It builds upon
previous research into Model Predictive Control (MPC) for building systems, describes
a near-optimal controller development process that could be applied to a wide variety of
systems involving either simple or complex fenestration systems in conjunction with radi-
ant cooling and/or heating systems, and estimates energy savings potential by applying
such controllers to annual simulations of ASHRAE 90.1-2010 based models of office build-
ings with radiant systems and either internal Venetian blinds, external Venetian blinds or
electrochromic windows.

1.2 Model Predictive Control (MPC) description and history

1.2.1 MPC description

MPC is a repeated solution of a finite-time optimal control problem: at each controller
time step, an optimal sequence of control values over a prediction horizon is calculated,
only the first of which is implemented, and at the next controller time step the horizon
shifts forward one step and the process is repeated. Note that in its standard form, the
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optimization is performed online (in real time) within the controller, and that the control
logic is implicit rather than explicit: the control designer must define the model and config-
ure the optimization, but does not specify (or know in advance) what the control response
will be under particular conditions.

MPC is well established in other fields. It was first used in the chemical process industry
in the 1960s, and has seen increasing use since then. A survey by Qin and Badgwell [2003]
notes that MPC is used in more than 4,000 industrial applications. It was a practically
proven technique before it was studied theoretically, with investigations of stability and
optimality criteria beginning in earnest in the 1980s. Overviews are available in Morari
and Lee [1999] and Mayne et al. [2000], and the techniques encapsulated in a Matlab
toolbox [MathWorks, 2012].

1.2.2 MPC in buildings

Buildings researchers have been investigating model-based controls for decades (e.g. Cumali
[1988], Braun [1990], Keeney and Braun [1996], House and Smith [1996] and Flake [1998],
Mahdavi [2001], Mahdavi et al. [2005], Mahdavi and Proglhof [2005], [Henze et al., 2004,
2005, Henze and Liu, 2005, Henze and Krarti, 2005, May-Ostendorp et al., 2011], [Kummert
et al., 2005, Kummert and Andre, 2005], [Clarke et al., 2002], [Wang and Jin, 2000],
[Nassif et al., 2005a,b]). There has been increasing interest in this research over the past
decade, both as computation power has become more easily available, and as more complex
supervisory control challenges have come up with system designers looking to find energy
savings by integrating systems and/or by using low-energy HVAC systems often involving
active thermal mass. Some recent work on MPC in buildings has also come from controls
researchers from other fields turning their attention to buildings (e.g. Ma et al. [2010]
and Oldewurtel et al. [2010]). A workshop in summer 2011 brought together many of the
world’s active researchers in this field [IBPSA-USA and IBPSA-Canada, 2011]. Potential
for energy savings, demand reduction and performance improvement has been shown with
a wide variety of systems, including chilled water storage, radiant slab pre-cooling and
integrated HVAC and facade control. It has not yet, however, found its way into common
practice within the industry.

1.2.3 MPC for integrated control of facade-HVAC systems

There are some examples of integrated facade-HVAC control with MPC in the literature
(e.g. the work of Madhavi noted above), the most notable of which is a very extensive
study called the OptiControl project carried out by ETH Zurich, Siemens and various
partners [ETH-Zurich, 2011]. The project looked at various building systems and climates
throughout Europe, including various levels of construction quality and variations on other
parameters such as window area fraction. Some of their results are summarized in Table
1, with explanations of terms shown in Figures 1 and 2.

5



Table 1: Energy Savings Potential: Average (over all simulations in various European
climates) annual total energy savings with perfect MPC (with perfect prediction and no
modeling errors) versus best available rule-based control. Derived from results in Table 7.10
[Gyalistras and Gwerder, 2010]

Building Passive House Construction Swiss Average Standard Construction
System Type I Type II Type I Type II Type III

S1 12% 16% 9% 10% 7%
S2 9% 12% 7% 8% 6%
S3 6% 8% 7% 5% 4%
S4 1% 5% 1% 2% 1%
S5 15% 18% 12% 6% -7%

Figure 1: ETH table 2.3

Figure 2: ETH table 2.2 (note that ‘pa’ represents ‘passive house’ and ‘sa’ represents ‘swiss
average’)
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For those interested in estimates of the energy savings potential with integrated control
of blinds, lighting and HVAC systems, the OptiControl project is a good place to start.
Their findings suggest that the most significant energy savings potential with MPC are for
complex systems combined with thermal mass 1 in climates and building designs with with
high and variable energy fluxes (e.g. solar). Our research hopes to complement the research
in that project, with a greater focus on methods for developing easier-to-develop-and-
implement near-optimal controls for systems involving either simple or complex fenestration
systems, and with application to North American climates.

1.2.4 Approximations to MPC for easier implementation

There are three inherent aspects of the approach that are likely causing some of the gap
between successful case-study demonstration and market uptake: (1) online optimization
is difficult to implement with existing building control systems; (2) the control responses
are implicit rather than explicit, which makes it difficult for system designers to integrate
it into their design processes; and (3) it is difficult to use standard building simulation
tools for MPC because of their long run-times and the fact that many do not allow the
user to explicitly specify initial state values. For these reasons, and possibly for other
reasons as well, some of the buildings MPC research has been carried out not with the
goal of getting the methods themselves into common practice, but rather with an eye to
developing near-optimal rules for some class of buildings by extrapolating from the results
of optimal control studies with prototypical buildings. However, a major benefit of MPC is
its ability to deal with innovative building systems customized to their contexts, for which
generalized rules would likely not apply. As such, there is a continued push from researchers
to make online-optimization MPC a marketable technology in buildings (e.g. [Sloup et al.,
2011]), although at present it remains far from common practice in the industry. Previous
research by the author has also attempted to facilitate the methods’ uptake in design and
operation through the development of an open-source software framework for online MPC
[Coffey et al., 2010], using GenOpt [Wetter, 2009] as the optimization engine and thus
allowing for the use of almost any common building simulation tool, which has been a
key goal of the development: in addition to the benefits of user familiarity, using common
building simulation tools for MPC could allow for the re-use of design phase models, and
it could dovetail is other re-uses of these models to improve building operations through
benchmarking, fault detection and diagnosis, and retrofit analysis. Recent work by May-
Ostendorp et al. [2011] considers the approach of simulating online MPC over some or all
of a representative year of disturbances (weather, occupancy, etc) and then using statistical
techniques to derive near-optimal control laws from the results. This could provide a useful
way of approaching the problem, but it will be difficult to parallelize the computation. An
alternative approach, used herein, is to more explicitly map the optimal control responses

1Note that high thermal mass cases were not found to have uniformly higher potential than low thermal
mass cases, it depends on its combination with the other factors.
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over the range of expected operational conditions (disturbances and initial states). We
cannot compute the entire set of control responses directly, but we can approximate the
optimal control response surface over the conditions range by sampling: calculating the
optimal responses over some grid of points and then interpolating between them. The
author’s recent dissertation [Coffey, 2011], attempted to clarify this approach and its range
of applicability, for both steady-state and predictive problems, and investigated techniques
to make it feasible for a broad range of problems with common building simulation tools.
Figure 3 illustrates the structure used to produce near-optimal control lookup tables using
a building simulation tool and GenOpt. Figure 4 shows the range of feasibility of the
approach, based on computational budget.

Figure 3: Open-source software for producing near-optimal control lookup tables, can use
most existing building modeling software
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Essentially, we want to enable buildings researchers, designers and product developers
to use their existing software and models for energy analysis, with limited additional skills
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development, to develop near-optimal controls for systems both for implementation, and
for use within the design process. Open-source software has been developed in previous
research for use with any type of systems. It has been more fully tested and fleshed out
herein within the particular context of facade-lighting-HVAC integration.

To the author’s knowledge there are no research precedents of offline-optimization con-
trol lookup table construction for integrated facade-HVAC-lighting systems, aside from two
case studies in [Coffey, 2011]: one looking at the integrated control of a theoretical system
of shading and natural ventilation, and one looking at a system of internal Venetian blind
shading and UFAD (also reported in [Coffey and Lee, 2011]).

1.3 Research objectives and approach

The research described herein aims to develop tools and methods for deriving near-optimal
controllers for simple or complex fenestration systems coupled with thermally massive
radiant heating and cooling systems, and to estimate their energy savings potential by
applying them to annual simulations of case study buildings in various North American
climates.

As described in more detail below, in all of the cases a 24 hour prediction horizon is
being used and a 1 hour control timestep applied to both the shade position and the cooling
level (or, equivalently, the zone temperature setpoint). As such, the control optimization
problem is too large to be dealt with directly by using GenOpt and EnergyPlus, as might
be hoped. A simplified model is developed herein, which includes a reduced-order thermal
model that may be calibrated to an EnergyPlus model (or any other thermal model, or
to measured data), and a fenestration component that may be of any arbitrary level of
complexity. Splitting the model into these parts will allow us to investigate the control
of innovative complex fenestration systems, while the reduced-order thermal part of the
model allows for faster optimizations.

The next section describes the methods, followed by some case study results with
internal Venetian blinds, external Venetian blinds and electrochromic windows. The appli-
cability of the results and methods are discussed thereafter, along with next steps in future
research.
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2 Methods

2.1 Control optimization problem description

At any given time t, the controller must determine the shading position ushade and radiant
cooling level ucool (or, equivalently, the zone temperature setpoint TzoneSP ) to minimize
energy consumption for lighting and cooling, Qconsumed, over a prediction horizon of 24 hrs,
subject to zone temperature constraints, and given weather conditions and predictions. The
zone temperature is constrained as follows: at any hour in the simulation, Tzone > TzoneMin

or Tzone < TzoneMax (where TzoneMin is set to 20C and TzoneMax is set to 24C). Figure 5
illustrates a possible optimal control response over a day.

Figure 5: Possible shape of optimal control response
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2.2 Models

2.2.1 EnergyPlus model

The EnergyPlus model used for the case studies was based on the PNNL Large Office
ASHRAE 90.1-2010 compliant EnergyPlus model. These models were created and used by
PNNL to test the energy savings between 90.1-2007 and 90.1-2010, and then posted online
as reference models. An image of the model (from the model descriptions in the download)
is shown in Figure 6. The building is 240’ x 160’, with a perimeter zone depth of 15’.

Figure 6: PNNL Large Office ASHRAE 90.1-2010 compliant prototype model
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The model’s HVAC system was modified for this research. The VAV system was turned
off, and a radiant slab heating and cooling system was added in its place. The radiant tube
depth was set to 5cm, the tube spacing to 6” and inside tube diameter to 0.5”. The tube
length was set to the floor area divided by the tube spacing. The flow rate was sized
manually to provide a peak capacity of 25 W/sqft (assuming 12C between supply and
return water temperatures). The radiant system is set to control to a zone temperature
setpoint, which is generally achieved with a minor time lag.

External Venetian blinds, internal Venetian blinds or electrochromic windows were also
added to the model, depending on the case. The Venetian blinds are modeled as being
always deployed, with just their slat angle changing over time. The details of the window
and shading systems are described in the case study descriptions below.

The main control variables of interest for each zone are the zone air temperature setpoint
and the shading position (or electrochromic level of shading). The middle story of the
building was used for this study.

2.2.2 Why EnergyPlus + GenOpt cannot be used directly for this problem

The control optimization problem is simply too big. With a 24 hour prediction horizon,
two control variables and an hourly control timestep, there are 48 optimization variables
to consider at each control timestep. Setting ushade to a constant when the sun is down
would eliminate some of the optimization variables, but still leaves roughly 40 in the worst
case. This is too many variables to be tractable with EnergyPlus and GenOpt. If the
problem could be reconfigured and/or simplified to involve fewer optimization variables
without losing significant accuracy, then it could possibly be made tractable. But there is
no obvious way of doing so. Figure 5 shows a possible daily shape of the optimal control
response, which is likely to occur in some cases but not all. If one was confident enough
that this shape would occur all or most of the time, it could be approximated as shown in
Figure 7, reducing the optimization problem to just 10 variables. However, without more
detailed studies of the optimal control, it is difficult to justify such an approximation.

Figure 7: Possible parametrization of control response
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2.2.3 Reduced-order model

A reduced-order model is thus used in place of the EnergyPlus model for the control
optimization. The reduced-order model has been developed to be as generic and fast-
running as possible while still capturing those aspects of complex fenestration systems
and thermally-massive HVAC systems that may have an impact on control optimization.
The model may also be used, with just slight modifications, for cases involving natural
ventilation, or for cases involving thermal mass within the fenestration system (but, in this
case, with no mass in the HVAC system). Note that the model can only be used for one
zone - it must thus be repeated for each perimeter zone of the EnergyPlus model.

Model description

The approach taken here is to devise a model that includes just the major dynamics
of the problem and nothing more. The structure of the model is shown in Figure 8. The
functions f1, f2 and f3 are all pre-computed: f1 is a lookup table (‘shading grid’, discussed
further below), and f2 and f3 are simplified continuous functions. The model was devised
in this way, with the fenestration influence separated into a separate function, so that
it may be used with fenestration systems of any level of complexity; f1 may be derived
from an EnergyPlus model, or from a more detailed Radiance or Window model, or from
measured experimental data.2

Figure 8: Reduced-order model
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[Q̇solZone, Q̇solSlab, luxDL] =f1(ushade, day, hr, Q̇direct, Q̇diffuse) (1)

Q̇AL =f2(luxDL, luxSP ) (2)

COPcool =f3(Tamb) (3)

czoneCap ·
dTzone

dt
=UAzone(Tamb − Tzone) + hc(Tslab − Tzone)

+ Q̇solZone + Q̇occEquip + Q̇AL (4)

cslabCap ·
dTslab

dt
=hc(Tslab − Tzone) + Q̇solSlab − Q̇coolMaxucool (5)

Qconsumed =

Z  
Q̇coolMaxucool

COPcool

+ µAL · luxAL

!
dt (6)

2Note that in the course of model calibration versus EnergyPlus (as discussed below), another model
element was added, Q̇solZoneOpaque, which is a scheduled value added to the right side of Equation 4 to
account for the solar gains through the opaque part of the facade. In the end, the scheduled values were
found to be small. This model element has been carried through to the annual simulation case studies, but
it likely can and should be removed from the model without any problems, so it is not discussed in any
detail here.
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Model implementation in Java

The model was coded in Java to avoid the computational time overhead associated
with tools like Trnsys or Modelica, to allow it to be run on any operating system without
license problems, thus enabling its use with cloud computing. A closed-form solution to
the system of differential equations (Equations 4 and 5) was produced and the model coded
in Java. This allows the simulation to run without any convergence loops. The derivation
of the system of equations and its solution are shown below. For convenience of notation,
the following name assignments are made.

x1 ← Tzone, x2 ← Tslab

α1 ←
UAzone
czone

, α2 ←
hc
czone

, α3 ←
hc
cslab

β1 ←
UAzoneTamb +QsolZone +QoccEquip +QAL

czone
, β2 ←

QsolSlab
cslab

, β3 ←
QcoolMax

cslab
(7)

Note that the system of differential equations (Equations 4 and 5) can be represented
in the form shown in Equation 8

ẋ =Ax + Bu (8)

where

x =

»
x1

x2

–
, u =

»
u1

1

–
, A =

»
−α1 − α2 α2

α3 −α3

–
, B =

»
0 β1

−β3 β2

–
(9)

The solution to Equation 8 at any time t is as follows.

x(t) =etAx(0) +

Z t

0

“
e(t−ι)ABu

”
dι (10)

The integration and matrix calculations were carried out using Mathematica to produce
Equations 12 and 13. Further variable name assignments are provided below to simplify
the equations.

κ1 ← α1 + α2 + α3, κ2 ← α1 + α2 − α3

κ3 ←
p
−4α1α3 + (α1 + α2 + α3)2, κ4 ←

q
α2

1 + 2α1(α2 − α3) + (α2 + α3)2 (11)
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x1(t+ τ) = x2(t)

 
−α2e

1
2 τ(−κ1−κ3) + α2e

1
2 τ(−κ1+κ3)

κ3

!

+x1(t)

 
−e
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−α3e

1
2 τ(−κ1−κ3) + α3e

1
2 τ(−κ1+κ3)

κ3

!

+x2(t)

 
−e

1
2 τ(−κ1−κ3) (κ2 − κ3) + e

1
2 τ(−κ1+κ3)(κ2 − κ3)

2κ3

!

+
1

2κ3

0@2
“

1− e
−11
2 τ(κ1+κ4)

”
((−α1 − α2 + κ4)(β2 − u1β3) + α3(−2β1 + β2 − u1β3))

κ1 + κ4

−
2
“
−1 + e

−1
2 τ(κ1−κ4)

”
((α1 + α2 + κ4)(β2 − u1β3) + α3(2β1 − β2 + u1β3))

κ1 − κ4

1A (13)

This can be simplified to the form shown in Equations 22 and 23, with the values of Γi

defined in Equations 14 through 21. Note that only Γ4 and Γ8 are time-variant, since only
β1 and β2 are time-variant.

The model was formulated with the cooling profile (ucool) as the expected input, but
through further manipulations of Equations 22 and 23, one can determine the required
cooling profile to produce a desired zone temperature profile (x1). This allows the model
to effectively be used with either a cooling profile or a zone temperature profile as the
input.

Although the model is formulated in continuous time, it is simulated in discrete time
(with a fixed value of τ). Any desired timestep τ can be used; for the cases described
herein, a simulation timestep of 1 hour is used throughout.
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Γ8(t)← 1
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x1(t+ τ) =Γ1x1(t) + Γ2x2(t) + Γ3u1(t) + Γ4(t) (22)

x2(t+ τ) =Γ5x1(t) + Γ6x2(t) + Γ7u1(t) + Γ8(t) (23)
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2.2.4 Calibration of reduced-order model to match EnergyPlus model

The reduced-order model can be calibrated to match an EnergyPlus model in two indepen-
dent steps: (1) produce the lookup table for the shading device (f1), and (2) calibrate the
parameters associated with the thermal aspects of the model (UAzone, hc, czoneCap, cslabCap).

Constructing the shading lookup table

The model equation 1, shown again below, relates the daylight level and solar gains on
the slab and the zone air to the shade position and the outdoor conditions - solar position
(via the ‘day’ and ‘hr’ variables), direct normal radiation and diffuse horizontal radiation.

[Q̇solZone, Q̇solSlab, luxDL] = f1(ushade, day, hr, Q̇direct, Q̇diffuse)

Given a building model, this function can be approximated as an interpolation lookup
table, constructed by iteratively running the model over a grid of values for ushade, day,
hr, Q̇direct and Q̇diffuse. This process may be automated, given an EnergyPlus model, as
follows:

1. Create a copy of the idf file.

2. Make sure the new idf file has the appropriate output variables listed: daylight level at sensor
position, absorbed solar on the slab, zone window transmitted solar, window heat gain and window
heat loss (the latter two are discussed further below).

3. Remove the RunPeriod object(s). Replace it with a set of RunPeriod objects for each day in the
grid.

4. Identify the shade position variable within the idf file (this step requires user input, but that may be
done up front), and produce a set of idf files (or iteratively overwrite one file as the process moves
along) corresponding to all of the shade positions in the grid.

5. Create a set of epw files based on the given epw file, one for each combination of Q̇direct and Q̇diffuse
in the grid. This can be done by simply overwriting the entire direct and diffuse radiation columns
in the epw file.

6. Run the large group of simulations for each combination of ushade, Q̇direct and Q̇diffuse in the grid.

7. Read the desired EnergyPlus outputs from these simulations (Q̇solZone, Q̇solSlab, luxDL) into the
desired form of the lookup table, associating them to the parameter values used to produce them.

Note that the value of Q̇solZone must include the forward fraction of the solar gains on
the window itself. This quantity is not easily obtained from EnergyPlus. A simple work-
around is to simulate the model twice, once with zero radiation in the weather file, and
once with the desired radiation for the point under consideration. In both cases, output
the window heat gain and loss variables. The window heat gain and loss variables include
the all of the transmitted solar gains, the forward fraction of the absorbed solar, and the
conduction gains/losses. Ignoring any minor differences in conductive gains between the
two cases caused by the different internal zone temperatures, one can remove the conductive
gains/losses from the desired case by subtracting the total window heat gain/loss from the
zero radiation case.
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The reduced-order model was calibrated as described above for each of the climates and
fenestration systems under consideration. For the shade gridding (f1), the shade angle was
varied over the values { 0 deg (fully down, closed), 45 deg, 90 deg (horizontally open), 135 deg, 180 deg

(fully up, closed) }corresponding to { 0, 0.25, 0.5, 0.75, 1 }as the shading signal , direct radiation
over values of { 0, 100, 200, 300, 400, 500, 600, 700, 800 } W/m2, diffuse radiation over values of
{ 0, 100, 200, 300 } W/m2, dayOfYear over 5 values between winter and summer solstice, and
hrOfDay over the values { 6, 9, 12, 15, 18, 21 }. Figure 9 shows the results of the shading
grid for the case of South-facing external Venetian blinds in Chicago - the vertical axis
shows the outputs (in W or lux), the horizontal axis shows each line of the lookup table
file. One can see five main divisions in the graph - these correspond to the shade angles.
So in this case the shade angle of 90o has the highest gains (as expected), followed by the
135o angle. Within each of the five divisions, the direct and diffuse values are increasing,
and the influence on the output values is roughly linear.

Figure 9: Shading grid, external Venetian blind case, South-facing zone, Chicago
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Calibrating the thermal aspects of the model

The thermal aspects of model are more properly calibrated through an error-minimization
calibration process. The differential equations in the model (Equations 5 and 6, shown
again below) describe the progression of the zone and slab temperatures (Tzone, Tslab) over
time, as a function of their initial states (Tzone0, Tslab0), the disturbances (Tamb, Q̇solZone,
Q̇occEquip, Q̇AL, Q̇solSlab), the cooling input (Q̇cooling, considered as a given during calibra-
tion), and four parameters: UAzone, hc, czoneCap, and cslabCap.

czoneCap ·
dTzone
dt

=UAzone(Tamb − Tzone) + hc(Tslab − Tzone) + Q̇solZone + Q̇occEquip + Q̇AL

cslabCap ·
dTslab
dt

=hc(Tslab − Tzone) + Q̇solSlab − Q̇cooling
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The calibration is performed as follows:

1. Run EnergyPlus over some arbitrary period of time (e.g. 5 days in June and July were used in the
case study below), with the following output variables listed in the idf: Tamb, Q̇solZone, Q̇occEquip,
Q̇AL, Q̇solSlab, Tzone, Tslab and Q̇cooling.

3

2. Process the outputs (including Tzone0 and Tslab0, but not the rest of the Tzone and Tslab values) into
a format appropriate to the reduced order model.

3. Wrap the reduced order model with GenOpt (i.e. set up the proper template file and config files,
etc), with a model post-processor to compare the reduced-order model outputs of Tzone and Tslab
over the horizon with those from the EnergyPlus, outputting the RMSE (root mean squared error)
to a text file that is read by GenOpt as the objective function.

4. Run GenOpt to minimize the RMSE, with UAzone, hc, czoneCap, and cslabCap as the optimization
variables. The optimal values of these variables are the calibrated values to use for the model.

Note that although the optimization is for just 4 variables, the objective function is
complex and may have various local minima. Good initial points for the optimization can
be easily defined based on the floor area of the zone under consideration. This helps to
both speed up the optimization and to ensure that the results are reasonable.

Figure 10 shows a comparison of the EnergyPlus zone and slab temperature outputs for
June 21-26, Chicago with those from the reduced-order model. The calibrated parameter
values are shown in the case studies below in Table 4.

Figure 10: Thermal calibration
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3This Q̇cooling value from EnergyPlus proved a hassle, and in the end it was found by a barrage of tests
that the EnergyPlus model to be somehow over-reporting the slab cooling amount by roughly 1.5 times.
(This was not discovered until after other possible unaccounted-for heat sources were investigated, including
the addition of the Q̇solZoneOpaque model element.) In the end, a proxy for this value had to be used based
on other EnergyPlus outputs.
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2.3 Control optimization configuration

At any given point in time, the integrated shading-cooling controller is faced with the
optimization problem noted earlier:

min
ushade,ucool

Qconsumed (24)

s.t. Tzonet > TzoneMin, t = 1..24

Tzonet < TzoneMax, t = 1..24

This optimization configuration uses the reduced-order model in the objective func-
tion. The 48-variable optimization can be solved directly using GenOpt by using penalty
functions to keep the zone temperature within its boundaries. However, the GenOpt op-
timization is very computationally expensive and/or imprecise. So an attribute of the
model’s structure is used to advantage as described below.

2.3.1 Two-level optimization problem configuration

The optimization problem can be split into two parts. The parts are not independent, but
splitting them allows for an efficient solution method using a combination of GenOpt and
a linear programming algorithm. The split follows the lines of the model, where the impact
of the fenestration system is calculated first and then the resulting lighting requirements
and solar gains are fed to the thermal network part of the model. The fenestration system
is allowed to be of any arbitrary level of complexity within the model, while the thermal
network is described as a linear system of differential equations. As described in the next
section, given any shading position profile over the prediction horizon, the optimal cooling
profile may be solved as a linear program using the Simplex algorithm. The complete
control optimization problem, including the shading profile, cannot however be solved as
a linear program because the fenestration system is nonlinear. So the overall problem is
solved using GenOpt, with the cooling optimization subproblem solved within GenOpt’s
objective function evaluation, as shown in Figure 11. The subproblem is thus solved many
times in the process of finding the overall solution.

Figure 11: Two-level optimization problem configuration
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This split will also be seen in variants on the implementation, including the use of a
lookup table approximation of the higher-level problem to determine ushade combined with
an online linear programming optimization of the subproblem to determine ucool.

The next section describes the subproblem solution using linear programming, fol-
lowed by a description of the GenOpt configuration for the overall problem. The reader
uninterested in these details may skip the following section without a significant loss in
understanding the overall picture.

2.3.2 Linear programming solution to cooling control subproblem

The cooling optimization problem may be formulated as a linear program, and thus solved
quickly and exactly by using the Simplex algorithm. The linear optimization problem in
its standard format is shown in Equation 25, where the objective function vector c is of
length 24 (i.e. the same length as ucool), b is a vector of length n, and A is a matrix of
dimension 24×n, where n is the number of constraints.

min
ucool

c · ucool (25)

s.t. Aucool ≤ b

The objective function vector c is simply defined from the model equations, as shown
in Equation 26.

c[t] =
QcoolMax

COP [t]
, for t = 1..24 (26)

Parts of the constraint matrix A and constraint vector b are simple, given the box
constraints on the control signal between 0 and 1.

ucool[t] ≤ 1 (27)

−ucool[t] ≤ 0 (28)

The challenge, however, is that the constraints on the zone temperature (a state vari-
able) must be converted to constraints on the variables ucool[t]. To do so, the equations
must be rearranged to show the zone temperatures x1[t], t = 1..24 and slab temperatures
x2[t], t = 1..24 as a function of the given Γi values, the initial temperatures x1[0], x2[0] and
the cooling control optimization variables ucool[t]. This may be done by defining q1[t], q1[t],
w1[i][t] and w2[i][t], for t = 0..24, as shown in Equations 29 and 30, and noting that their
equations may be derived iteratively as shown by the algorithm labeled 31.

x1[t] = q1[t] +

tX
i=0

(w1[i][t] · ucool[i]) (29)

x1[t] = q2[t] +

tX
i=0

(w2[i][t] · ucool[i]) (30)
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set q1[0]← x1[0]

set q2[0]← x2[0]

for t = 1..24 q1[t+ 1] = Γ1q1[t] + Γ2q2[t] + Γ4[t]

q2[t+ 1] = Γ5q1[t] + Γ6q2[t] + Γ8[t]

w1[t+ 1][t+ 1] = Γ3[t+ 1]

w2[t+ 1][t+ 1] = Γ7[t+ 1]

for i = 0..t w1[i][t+ 1] = Γ1w1[i][t] + Γ2w2[i][t]

w2[i][t+ 1] = Γ5w1[i][t] + Γ6w2[i][t] (31)

Note that the problem constraints specify that x1[t] ≤ x1max , ∀t (where x1max = 24oC
in this implementation). Therefore, given Equation 29, the following is an equivalent
constraint on the values of ucoolt .

tX
i=0

(w1[i][t] · ucool[i]) ≤ x1max − q1[t] (32)

The constraints in Equations 27, 28 and 32 thus allow for the construction of the
constraint matrix A and constraint vector b. Note that more constraints could be added,
such as a lower bound for the zone temperature, or bounds on the slab temperature, by
using similar manipulations of the equations.

2.3.3 GenOpt solution to the overall problem with shading position

Instead of calling the reduced-order model directly, GenOpt calls a small program that first
calls the cooling optimizer, then passes the optimal cooling setpoints along with GenOpt’s
shading setpoints to the model, as shown in Figure 11. The GenOpt problem is other-
wise a relatively straightforward optimization problem with 24 variables (just the shading
variables over the horizon). The GPS-Hookes-Jeeves algorithm in GenOpt was used in the
case studies below, with 2 step size reductions, to a control signals precision of 0.25.
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2.4 Offline optimizations over a grid of conditions

The overall methods employed here are the same as those employed in [Coffey, 2011]. Given
a model of the building / system under consideration, a grid of conditions is constructed
to cover the range of current and predicted weather, occupancy and initial state conditions
that the building / system is expected to face in operation. This often requires the use of
weather parametrization to decrease the grid size. For each point in the conditions grid,
the model is used with an optimization algorithm to find the optimal control configuration,
resulting in a lookup table that can be used with interpolation for real-time control.

2.4.1 Conditions parametrization

For the 24-hour simulation used in the optimization objective function, the model requires
the initial values of Tzone and Tslab, along with the values of the hourOfDay and the day-
OfYear, and hourly values of the following variables: Tamb, Q̇direct, Q̇diffuse, luxSP , Q̇occEquip.
Using all of these conditions within the conditions grid would produce a 124-dimensional
grid (4 + 24*5 = 124), which is significantly more than the 5-7 that is computationally-
feasible. To make the grid feasible, some of the variables (Q̇diffuse, luxSP , Q̇occEquip) are
assigned fixed scheduled values over the day: the schedule for Q̇diffuse is derived from aver-
age values of the weather file (as shown below), and the schedules for luxSP and Q̇occEquip

are derived from the EnergyPlus model. In addition, the hourly values of Tamb and Q̇direct

are set to be functions of their daily maximum and minimum values, using normalized
curves derived from the TMY weather file. These normalized curves are shown for the
various climates in the case study descriptions below. For reference, the curves from the
Chicago TMY case, along with their daily max and min values over the year, are shown in
Figure 12.

2.4.2 Conditions grid definition and solution

A conditions grid was constructed as shown in Table 2. This 7-dimensional grid has 4860
points which must be optimized. The resulting control lookup tables for each of the cases
considered will be shown in the results section below.

Table 2: Conditions grid definition
min max step size

day of year 182 272 90
hour of day 6 21 3
minimum Tamb 10 20 5
maximum Tamb 20 30 5

maximum Q̇direct 100 800 300
Tzone0 19 27 2
Tslab0 19 23 2
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Figure 12: Conditions parametrizations, Chicago: Tamb (top), Q̇direct (middle), and
Q̇diffuse (bottom)
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2.5 Annual simulations

2.5.1 Configurations

Two different annual simulation configurations were used in this research - the first was
temporarily abandoned because of technical difficulties. This first configuration is shown in
Figure 13, and uses the Building Control Virtual Test Bed (BCVTB) to link the EnergyPlus
model with the controller. In the simulation, the values of the control setpoints (ushade and
TzoneSP ) are calculated by the controller and fed to EnergyPlus every simulation timestep.
BCVTB writes the current state values (Tzone and Tslab) to a text file before calling the
control algorithm via a bat file. The control algorithm also reads in a text file containing the
day-ahead predictions of min and max temperatures and max direct and diffuse radiation
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- these values are based on the epw file, and so represent perfect predictions (some level of
prediction error could easily be added to the scheme).

Figure 13: Screenshot of BCVTB configuration

This approach was problematic, however, because EnergyPlus pre-calculates daylight-
ing and solar gains, looking ahead at scheduled shading position values, rather than calcu-
lating them directly in the given timestep - so by the time the BCVTB sent the shading
position schedule value to EnergyPlus, it had already calculated the daylighting level and
solar gains for that hour using default schedule values. Various work-arounds were consid-
ered, and some might be successful, but for the purposes of keeping the research moving a
second annual simulation configuration was adopted.

The second configuration uses the reduced order model for the annual simulation instead
of the EnergyPlus model. The configuration is otherwise the same as the first, but instead
of being implemented in the BCVTB, it is simple enough that it can be implemented
directly in Java (and thus runs much more quickly). This configuration represents the case
of ‘zero model mismatch’ - the model used to make the controller is an exact representation
of the building - as is appropriate for studies of theoretical potential, but is not ideal for
the consideration of more realistic implementation.

2.5.2 Heuristic control cases for comparison

Three heuristic ‘base case’ controllers were considered for comparison. ‘Base1’ simply keeps
the shading minimal all day (in the case of the Venetian blinds it keeps them horizontal
all day) and simply keeps a zone temperature cooling setpoint of 24C, thus not employing
any pre-cooling for better cooling system COP but minimizing the amount of energy that
needs to be pulled from the slab. ‘Base2’ uses maximum shading all day, while keeping
a zone temperature cooling setpoint of 24C - this uses less cooling energy than ‘Base1’
because of the decreased solar gains but uses more lighting energy. ‘Base3’ provides a case
similar to what we would expect the optimal profile to look like: the fenestration is set to
minimum shading (0.5 position of the Venetian blinds) all day except closed (0 position)
between the hours of 1-4pm, and the zone temperature cooling setpoint is set to 21C from
midnight to 9am and then to 24C thereafter.
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2.5.3 Two near-optimal controllers: ‘Lookup’ and ‘luOptCool’

In all of the case studies described below, at least the following two near-optimal con-
trollers are considered: one denoted as ‘lookup’ in the figures and tables, the other denoted
as ‘luOptCool’. The ‘lookup’ controller uses the pre-calculated control lookup table with in-
terpolation to determine the control values for both ushade and TzoneSP (over the prediction
horizon). This is the way that the control lookup table is generally intended to be used it is
simple to implement in annual simulations and would also be simple to implement in physi-
cal implementations. However, the 2-level structure of the optimization problem allows for
another relatively simple near-optimal controller option: the ‘luOptCool’ controller uses
the lookup table with interpolation to determine the control values for just ushade (over
the prediction horizon), and then given these value of ushade, an online optimization is
performed to determine the control values for TzoneSP . This online optimization is just for
the subproblem, and is exactly as described above for the subproblem linear programming
optimization using the Simplex algorithm, which takes just a matter of seconds to run.
The ‘luOptCool’ controller may thus be thought of as a hybrid controller, part of it using
a pre-calculated offline-optimization lookup table, and part of it using online optimization.
Instead of using only the daily minimum and maximum values of temperature and radia-
tion, this controller uses the hourly day-ahead predicted values. It performs better than
the ‘lookup’ controller because it avoids the performance penalties associated with both
conditions parametrization and lookup interpolation for the cooling optimization variables
(but it still has these performance penalties for the shading optimization variables, so it
performs somewhat less well than would a full online MPC configuration).

2.5.4 Control block length in case studies

In the case studies below, the control lookup tables were computed for varying hourOfDay
values (with the exception of the internal Venetian blind and electrochromic cases, because
of dwindling computation time availability), but the annual study results presented below
are only for the case with a control block length of 24 hours - ie. only for the case where
at midnight the controller determines the setpoints for the entire upcoming day and all of
them are implemented and controller is not called upon again until the following midnight.
The cases with shorter block lengths, e.g. 4 hours, where the controller determines the
values for the full day ahead but only the first 4 hours get implemented before the con-
troller is called upon again to determine the values for the day ahead again from this new
starting point - although these shorter block length cases should have shown slightly better
performance than the 24-hour block length cases, they actually performed slightly worse.
Further investigations are required to determine why this happened. However, because
the annual simulations are using perfect day-ahead predictions and zero model mismatch
(ie. the annual simulation model and the controller model are identical), the performance
gains with a shorter block length should be small; the 24-hour block length results are good
indicators of the energy savings potential.
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3 Simulation studies of savings potential: Case descriptions

3.1 Overview: Case study configurations

The purpose of these simulation studies is both to test the methods described above and to
estimate the energy savings potential available from integrated near-optimal control of some
common operable shading technologies and massive-slab radiant cooling. As such, three
different operable shading technologies are considered, and they are applied in four different
climates, and two different orientations. The three operable shading technologies are (1)
external Venetian blinds, (2) internal Venetian blinds, and (3) electrochromic windows.
The four climates being considered are (a) Chicago, (b) Houston, (c) New York and (d)
Sacramento. The two orientations are (S) South and (W) West. For the South orientation,
all twelve (3x4) combinations of shading technologies and climates are considered. For the
West orientation, all four climates are considered but only one shading technology (external
Venetian blinds). So a total of 16 case studies are considered.

In each case study, the three base case heuristic control strategies are applied as de-
scribed in the previous section. At least two varieties of near-optimal control are also
applied in each case, also as described above: ‘lookup’, with both the shading and cooling
setpoints determined by interpolation of a pre-computed lookup table; and ‘luOptCool’
with the shading setpoints determined by lookup table interpolation and the cooling set-
points determined by online optimization (fast, since it is just a simplex algorithm), given
the shading setpoints. The cases with South-facing external Venetian blinds were studied in
greater detail than the other case, and results are shown in those cases for different lookup
tables and other near-optimal control variants to more thoroughly describe the nature of
the control challenge and how the controllers are working.

In the results section below, the 16 case studies are organized into four groups: (1)
external Venetian blinds, South zone; (2) external Venetian blind, West zone; (3) internal
Venetian blind, South zone; and (4) electrochromic window, South zone.

Offline-optimization lookup tables were not constructed for all of the 16 cases, but
rather just for the Chicago cases, and then applied to the other climates. Thus for the
non-Chicago climates the lookup tables used for their near-optimal control are not perfectly
matched. However, as described below, their differences in construction are small, and the
Chicago-based lookup tables do provide a reasonably good approximation to what the
lookup tables would be for the other climates if they had been calculated out in full: an
extra Houston-based lookup table was constructed for the external Venetian blind - South
zone case and applied to all four climates to investigate how the different lookup table basis
affects the near-optimal control performance.

Section 3.2 describes the details of the three shading technology configurations consid-
ered. Section 3.3 then shows the reduced-order model configuration for the 16 cases, in
particular describing their shading grids (f1 in the model equations) and thermal model
parameters (which are independent of shading technology or climate, and change only with
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orientation because of the corresponding differences in zone sizes). Section 3.4 then de-
scribes the additional configuration information used in calculating the lookup tables - in
particular, the conditions parametrization curves that are a function of the climate.

3.2 Fenestration system descriptions

The case studies are all based on the modified ASHRAE 90.1-2010 model described in
the methods section above, with just the fenestration systems changing between the three
configurations: external Venetian blinds, internal Venetian blinds, and electrochromic win-
dows. Their descriptions within EnergyPlus are shown below.

3.2.1 Venetian blinds

The Venetian blinds material description is the same in both the external and internal
cases, and is shown in Table 3. It was based on an example file from the EnergyPlus
standard download. The associated windows in both cases are the same as those used in the
ASHRAE 90.1-2010 model: double-paned glazing with window properties of SHGC=0.40,
Tvis=0.52, U-value=2.95 W/m2-K. The effects of the blind position and blind state on
solar gains and daylighting is shown in the shading grid graphs below.

3.2.2 Electrochromic windows

The electrochromic window descriptions start from the given double-paned glazing descrip-
tion, but with the external pane replaced with an electrochromic glass. Two glass states
are described - clear and tinted – and the state is controlled with a scheduled value be-
tween 0 (clear) and 1 (tinted). The two states’ outside glass layer descriptions use detailed
spectral data sets with resultant window properties of SHGC=0.43-0.13, Tvis=0.50-0.01,
U-value=2.88 W/m2-K. The effects of the two glass states on solar gains and daylighting
is shown in the shading grid graphs below.
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Table 3: Venetian blinds material description (WindowMaterial:Blind in EnergyPlus)

Property Value

Slat orientation Horizontal
Slat width (m) 0.025
Slat separation (m) 0.01875
Slat thickness (m) 0.001
Slat angle (deg) 90
Slat conductivity (W/m.K) 44.9

Slat beam solar transmittance 0
Front Side Slat beam solar reflectance 0.8
Back Side Slat beam solar reflectance 0.8

Slat diffuse solar transmittance 0
Front Side Slat diffuse solar reflectance 0.8
Back Side Slat diffuse solar reflectance 0.8

Slat beam visible transmittance 0
Front Side Slat beam visible reflectance 0.8
Back Side Slat beam visible reflectance 0.8

Slat diffuse visible transmittance 0
Front Side Slat diffuse visible reflectance 0.8
Back Side Slat diffuse visible reflectance 0.8

Slat Infrared hemispherical transmittance 0
Front Side Slat Infrared hemispherical emissivity 0.9
Back Side Slat Infrared hemispherical emissivity 0.9

Blind-to-glass distance (m) 0.05
Blind top opening multiplier 0
Blind bottom opening multiplier 0
Blind left-side opening multiplier 0.5
Blind right-side opening multiplier 0.5

3.3 Reduced-order model descriptions

Between the various simulation cases, only two aspects of the reduced-order model change:
the shading grid (f1 in the model equations), and the parameters associated with the
thermal parts of the model (UAzone, hc, czoneCap and cslabCap).

3.3.1 Shading grids

As noted in Equation 1, the influence of the fenestration system on the solar gains and
daylighting is included within the reduced-order model as follows.

[Q̇solZone, Q̇solSlab, luxDL] = f1(ushade, day, hr, Q̇direct, Q̇diffuse)

For each of the 16 simulation case studies, a lookup table was produced for this function
f1, called a ‘shading grid’ herein. The lookup tables were produced by running batches
of EnergyPlus simulations and post-processing the results, as described in the methods
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section above. The lookup tables are 5-dimensional, and thus difficult to visualize. They
are stored in simple csv text files, each line representing a 5-dimensional point, sorted in
ascending order first by ushade, then by Q̇direct, then by Q̇diffuse, then by day of year and
by hour of day. In the graphs below, the horizontal axis is simply the line number of the
csv text file. So for the Venetian blind cases, there are five visible groups from left to
right corresponding to the five possible blind positions, and within each group the values
of Q̇direct and Q̇diffuse are increasing from left to right. For the electrochromic cases, there
are only two possible shading states within the EnergyPlus model, so there are only two
major groups in those graphs.

Note how the interior Venetian blinds (Figure 16) show much higher zone solar gains
when the blinds are closed (in positions of 0o or 180o) than do the exterior Venetian blinds
(Figures 14 and 15). Also note that in the Venetian blinds cases the floor solar gains are
highest when the blinds are rotated slightly upwards to 135o. The electrochromic windows
produce much more daylight in their clear state than do either of the Venetian blind
configurations (since the Venetian blinds are being modeled as always deployed, with just
the blind angle changing), and that the darkened state effectively eliminates daylighting
and floor solar gains but still produces some zone solar gains.

Also note that given a particular fenestration system, the only thing changing between
climates that can affect the shading grid is the latitude.

3.3.2 Thermal parameters

The thermal parameter values used in the case studies are shown in Table 4. The values
of the South zone were produced through calibration against the EnergyPlus model as
described in the calibration section above. To save computation time, the values used for
the West zone were simply scaled from those in the South zone, based on the differences
in floor area.

Table 4: Calibrated parameter values for the thermal aspects of the model
South zone West zone

parameter value

UAzone 320
hc 2600
czoneCap 4000
cslabCap 14000

parameter value

UAzone 213.3
hc 1733.3
czoneCap 2666.7
cslabCap 9333.3

Note that by keeping the thermal parameters the same in the different climates, we are
considering the case where the exact same building (including the same wall construction)
is being simulated in different climates. In future iterations of this research, if they are to
occur, one may wish to consider different constructions in different climates - in that case,
the thermal calibration would have to be repeated for each different building description
(ie. for each different climate).
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Figure 14: Shading grids: Exterior Venetian blinds, South-facing
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Figure 15: Shading grids: Exterior Venetian blinds, West-facing
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Figure 16: Shading grids: Interior Venetian blinds, South-facing
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Figure 17: Shading grids: Electrochromic windows, South-facing
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3.3.3 Schedules of internal loads and lighting setpoints

The daily schedules for the internal loads (Q̇occEquip) and lighting setpoints (luxSP ) are
shown in Table 5. These are used in the annual simulations and in the control lookup table
calculations. These values were derived from the EnergyPlus model.

Table 5: Internal loads schedule and lighting setpoint schedule
hours 1-5 6-7 8-11 12 13-16 17-21 22 23-24

QoccEquip 754 754 4077 2927 4077 1159 1159 754
luxSP 23 500 500 500 500 98 23 23

3.4 Lookup table calculation configurations

As noted above, five offline-optimization control lookup tables were produced: one for
each of the three fenestration systems options for the South zone in Chicago, one for the
West zone with external Venetian blinds in Chicago, and one for the South zone with
external Venetian blinds in Houston. In each case, the conditions grid and optimization
configuration were the same as described in the methods section above. The 4860 GenOpt
optimizations required for each case were carried out on either Amazon EC2 linux machines
(in the case of Chicago-South-externalVenetian) or on the Lawrencium cluster at LBNL
(for the rest of the cases): these computations required about 1500 processor-hours on the
Amazon cloud (roughly $150) or about 600 processor-hours on the Lawrencium cluster.
(Note that previous iterations of these studies, using GenOpt for both the shading and
the cooling, instead of using the two-level optimization configuration, required a great deal
more computing - approximately 5000 processor-hours for one case.)

What changes between the five control lookup table calculation configurations is the
reduced-order model being used within the objective function (ie. the shading grid and
thermal parameters for the case being considered), and the conditions parametrization
curves that are dependent on the climate - these are the curves that are used to translate
from the daily min and max values of TambMax, TambMin and Q̇directMax (and the constant
Q̇diffuseMax = 200) used in the conditions grid to the hourly values of Tamb, Q̇direct and
Q̇diffuse used in the model.

3.4.1 Conditions parametrization for lookup tables

Most of the lookup tables were constructed based on the Chicago case, and thus use the
conditions parametrization curves shown in Figure 18a. However, one of the lookup tables
uses the Houston case, and thus uses the conditions parametrization curves shown in Figure
18b. Figure 18c and 18d, for New York and Sacramento, are included here to show how
similar these curves are for different climates.
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Figure 18: Conditions parametrizations curves
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(b) Houston
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(c) New York
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(d) Sacramento
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4 Simulation studies of savings potential: Results

The annual results of the 16 case studies are presented below, grouped by their fenestration
technology and orientation. The hourly simulation outputs, along with their monthly and
annual summaries, can be reviewed in detail in the Excel files located here:

https://s3.amazonaws.com/facadeHVACcontrolOpt/annualResultsExternalVenetianSouth.zip

https://s3.amazonaws.com/facadeHVACcontrolOpt/annualResultsExternalVenetianWest.zip

https://s3.amazonaws.com/facadeHVACcontrolOpt/annualResultsInternalVenetianSouth.zip

https://s3.amazonaws.com/facadeHVACcontrolOpt/annualResultsElectrochromicSouth.zip

These Excel files allow the reader to compare the control strategies in as much detail
as they wish. In this section, we show some of the details of the external Venetian blinds
South zone case, but otherwise focus on the annual summaries. In general, the external
Venetian blinds South zone case is used as the illustrative case in the discussion herein,
and is described in much greater detail below than are the remaining cases.

Regardless of whether the reader wishes to download and dig into the annual simulation
results details, it is strongly recommended that the control lookup tables are downloaded
from the following link and explored with their Excel graphing tools:

https://s3.amazonaws.com/facadeHVACcontrolOpt/controlLookupTables.zip

One of the most useful aspects of the lookup table approach to approximating MPC
is that the control responses can be readily explored through simple interfaces such as
those in the download. The user can select the values of the conditions variables by using
the pull-down menus at the top of the page, and the optimal control responses over the
prediction horizon are automatically graphed below.

4.1 External Venetian blinds, South zone

4.1.1 Control lookup tables

For this case of external Venetian blinds, South zone, two different control lookup ta-
bles were constructed: one based on the Chicago case (ie. using the Chicago conditions
parametrization curves and the Chicago shade grid), and the other based on the Houston
case. Figure 19 shows two example responses from the control lookup table based on the
Chicago case. Note how the cooling profile changes with a different diurnal temperature
range: with a larger range it cools earlier in the morning, since there is more of an ad-
vantage to earlier pre-cooling because of the COP differences; but with a smaller range
it cools somewhat later, balancing the pre-cooling COP benefit against the penalty of in-
creased thermal gains associated with pre-cooling (because of the increased indoor-outdoor
temperature difference and thus heat gain through the envelope).
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Figure 19: Examples from control lookup table, external Venetian blinds, South, Chicago
{ TambMax = 30, TambMin = 15, Q̇directMax = 500, dayOfYear = 182, hourOfDay = 1, Tzone0 = 23, Tslab0 = 21 }
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{ TambMax = 30, TambMin = 20, Q̇directMax = 500, dayOfYear = 182, hourOfDay = 1, Tzone0 = 23, Tslab0 = 21 }
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Figure 20: Examples from control lookup table, external Venetian blinds, South, Houston
{ TambMax = 30, TambMin = 15, Q̇directMax = 500, dayOfYear = 182, hourOfDay = 1, Tzone0 = 23, Tslab0 = 21 }
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{ TambMax = 30, TambMin = 20, Q̇directMax = 500, dayOfYear = 182, hourOfDay = 1, Tzone0 = 23, Tslab0 = 21 }
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4.1.2 Annual simulation details, Chicago case

Annual simulations were run for five different control strategies: the three base cases de-
scribed in the methods section (Base1 = shading position kept at 90o, zone temp setpoint
always 24C; Base2 = shading position kept at 0o, zone temp setpoint always 24C; Base3 =
a heuristic pre-cooling strategy with afternoon shade closing); a case using interpolation of
the control lookup table for both the shading setpoint and the zone temperature setpoint;
and a case using interpolation of the control lookup table for the shading input and per-
forming an online optimization for the zone temperature setpoints. The behavior of these
five control strategies can be seen in Figure 22 for the period of July 1 to July 7. Monthly
summaries of the heating, cooling and lighting energy use are shown in Figure 21, where
‘lookup’ refers to the use of the control lookup table for both shading and cooling, and
‘luOptCool’ to the use of the lookup table for shading and online optimization for cooling.

Figure 21: External Venetian blinds, South zone, Chicago, monthly results
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Figure 22: External Venetian blinds, South zone, Chicago, July 1-7 Details
Base1: shading position kept at 90o, zone temp setpoint always 24C
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Base2: shading position kept at 0o, zone temp setpoint always 24C
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Base3: a heuristic pre-cooling strategy with afternoon shade closing
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Lookup table control of both shading and cooling
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Lookup table control of shading with online optimization of cooling
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4.1.3 Annual simulation results, all climates

Figure 23 shows the annual energy consumption results for all four climates considered,
using the Chicago-based lookup table for all four cases. We will generally disregard the
heating energy in our discussion - the optimization-based controllers were not designed with
heating in mind, and their effects on heating (relative to Base1) tend to be small, unin-
tended, and generally in favor of the optimization-based controllers. Note that Base1 signif-
icantly outperforms Base2 and Base3 in all of the climates, and that the two optimization-
based controllers tend not to perform much better than Base1.

Figure 23: Annual results summaries, external Venetian blinds, South, Chicago lookup
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The relative performance of the three base cases sheds some light on the nature of
the control challenge for this particular building configuration. Base1 represents the case
where the shades are generally letting in nearly as much light and solar gains as possible,
and thus uses nearly the minimum possible amount of lighting energy but more cooling
energy than the other cases might. Base2 represents the case where the blinds are closed
all the time, thus minimizing the cooling requirement (although not necessarily the cooling
energy since it does not do any active pre-cooling to take advantage of COP differences with
outdoor temperature), but maximizing the lighting energy. The annual energy differences
between Base1 and Base2 demonstrates how the lighting penalty associated with closing
the blinds is usually much more significant than the cooling savings it brings. Base3
generally keeps the blinds open most of the day except a few hours in the afternoon, but
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note how much of a lighting penalty it takes relative to Base1 for a relatively small benefit
in cooling energy. The optimization-based control lookup table (Figure 19 above) thus
tends to keep the blinds open (horizontal, 90o) for most of the day, closing them only
partially at select times, usually around noon or the early afternoon - the resulting lighting
energy thus tends to be slightly higher in the optimization-based cases than in Base1. The
cooling savings relative to Base1 come from these minor but timely decreases in solar gains
working together with the active pre-cooling of the slab to take advantage of the lower
cooling COP earlier in the day. The optimization must thus make a complex trade-off
between the increase in lighting energy and the decrease in cooling energy. Note also that
the decrease in cooling energy because of the lower COP is slight, since the COP sensitivity
to ambient temperature (based on the EnergyPlus model) is slight. Base3 shows that this
shading trade-off and the pre-cooling benefit is tricky - using a simple heuristic like in this
case can easily increase the annual energy consumption relative to the very simple Base1.

Figure 24 compares the annual cooling + lighting energy for Base1 and the two optimization-
based controllers. The lookup table controller generally performs slightly better than Base1
but only by a few percent. Using online optimization for the cooling control, which is quick
to do online because of it being an analytic optimization, eliminates the performance losses
associated with the lookup interpolation for the cooling, and produces savings that are a
few percent higher. Note that the lookup table performs poorly in Houston, which may be
because the lookup table was based on Chicago which has a significantly different latitude
(and thus a significantly different shading grid, unlike the other two cases). The details of
the cooling and lighting savings are shown in Table 6.

Figure 24: Comparisons of annual results, external Venetian blinds, South, Chicago lookup
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Table 6: Percent savings relative to Base1, external Venetian blinds, South, Chicago lookup

Chicago NY Houston Sacramento

light cool total light cool total light cool total light cool total

lookup -2.4 9.2 2.6 -2.3 10.0 3.5 -3.9 2.5 −0.3 -2.0 10.4 4.7
luOptCool -2.3 16.5 5.8 -2.1 16.0 6.5 -3.7 7.0 2.4 -2.0 15.2 7.3
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Figures 25 and 26 and Table 7 show the results for the same set of annual simulations,
but this time using the Houston-based control lookup table instead of the Chicago-based
one. The results suggest that there might be something wrong with the Houston-based
control lookup table. Further analysis is required to determine why this might be the case.

Figure 25: Annual results summaries, external Venetian blinds, South, Houston lookup
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Figure 26: Comparisons of annual results, external Venetian blinds, South, Houston lookup
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Table 7: Percent savings relative to Base1, external Venetian blinds, South, Houston lookup

Chicago NY Houston Sacramento

light cool total light cool total light cool total light cool total

lookup -2.9 -2.3 −2.6 -3.1 3.7 0.1 -3.8 -0.7 −2.0 -3.1 0.0 −1.4
luOptCool -3.0 8.0 1.7 -3.2 11.7 3.8 -2.5 4.6 1.6 -2.8 6.0 2.0
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4.2 External venetian blinds, West zone

4.2.1 Control lookup table

Figure 29 shows two example points in the control lookup table (the same two sets of
conditions used in the previous lookup table graphs). Note that the control responses
are broadly similar to those calculated for the South zone for these conditions, but with
somewhat more cooling required in the West case and it is applied somewhat later in the
day, and with slightly more shading movement away from the 90o position in the afternoon.

4.2.2 Annual simulation results

The annual simulation results are summarized in Figures 27 and 28, and in Table 8. They
show less energy savings than were found for the South zone cases.

Figure 27: Annual results summaries, external Venetian blinds, West, Chicago lookup
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Figure 28: Comparisons of annual results, external Venetian blinds, West, Chicago lookup
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Table 8: Percent savings relative to Base1, external Venetian blinds, West, Chicago lookup

Chicago NY Houston Sacramento

light cool total light cool total light cool total light cool total

lookup -5.3 7.9 −0.2 -5.1 7.9 0.3 -7.7 6.4 −0.3 -12.5 12.5 0.1
luOptCool -4.4 12.9 2.3 -4.3 13.4 3.0 -6.1 8.9 1.7 -9.6 14.5 2.5
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Figure 29: Examples from control lookup table, external Venetian blinds, West, Chicago
{ TambMax = 30, TambMin = 15, Q̇directMax = 500, dayOfYear = 182, hourOfDay = 1, Tzone0 = 23, Tslab0 = 21 }
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4.3 Internal venetian blinds, South zone

4.3.1 Control lookup table

Figure 32 shows two example points in the control lookup table. The control signals are
similar to those of the external Venetian blinds, except that more cooling is required.

4.3.2 Annual simulation results

The annual simulation results are summarized in Figures 30 and 31, and in Table 9. The
energy savings are quite small. The blind position has less impact on the cooling load in
the internal Venetian blind case than it does in the exterior Venetian blind case, so there is
less possibility for cooling energy savings - this is reflected in the lower savings for annual
cooling here (Table 9) than in the external Venetian blind case (Table 6).

Figure 30: Annual results summaries, internal Venetian blinds, South, Chicago lookup
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Figure 31: Comparisons of annual results, internal Venetian blinds, South, Chicago lookup
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Table 9: Percent savings relative to Base1, internal Venetian blinds, South, Chicago lookup

Chicago NY Houston Sacramento

light cool total light cool total light cool total light cool total

lookup -3.1 3.1 0.2 -2.2 3.3 0.9 -4.0 2.7 0.3 -6.4 4.5 0.5
luOptCool -2.5 8.7 3.5 -2.3 8.0 3.6 -4.2 5.8 2.2 -5.3 7.8 2.9
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Figure 32: Examples from control lookup table, internal Venetian blinds, South, Chicago
{ TambMax = 30, TambMin = 15, Q̇directMax = 500, dayOfYear = 182, hourOfDay = 1, Tzone0 = 23, Tslab0 = 21 }
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4.4 Electrochromic windows, South zone

4.4.1 Control lookup table

Figure 35 shows two example points in the control lookup table.

4.4.2 Annual simulation results

The annual simulation results are summarized in Figures 33 and 34, and in Table 10. In
the Base1 and Base3 cases the open state is 0.75 (3/4 darkened).4 The results here differ
from the other cases in that the lighting savings relative to Base1 are positive and the
cooling savings negative; the controllers save lighting energy over Base1 by using less dark
states more often, suggesting that either the Base1 shading level is somewhat darker than
it should be, or that constant values work less well for electrochromics than for Venetian
blinds. (More work is needed to determine what went wrong in the Sacramento case.)

Figure 33: Annual results summaries, electrochromic windows, South, Chicago lookup
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Figure 34: Comparisons of annual results, electrochromic windows, South, Chicago lookup
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Table 10: Percent savings relative to Base1, electrochromic windows, South, Chicago
lookup Chicago NY Houston Sacramento

light cool total light cool total light cool total light cool total

lookup 25.8 -21.5 3.3 25.3 -16.7 3.7 16.5 -11.8 −1.0 10.9 -24.5 −9.7
luOptCool 26.1 -14.9 6.6 25.1 -10.6 6.7 16.6 -7.0 2.0 14.8 -19.0 −4.9

4Initial studies with constant values of 0 and 0.5 found that base1 was using significantly more cooling
energy and thus performing much worse than the case with this value set to 0.75.
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Figure 35: Examples from control lookup table, electrochromic windows, South, Chicago
{ TambMax = 30, TambMin = 15, Q̇directMax = 500, dayOfYear = 182, hourOfDay = 1, Tzone0 = 23, Tslab0 = 21 }
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4.5 Results summary

The annual lighting + cooling savings are summarized in Figures 36 and 37, and in Table
11. The results show greater savings potential for external Venetian blinds than for internal
Venetian blinds, as was expected. The results also show greater savings for the South zone
than for the West zone. The results for the electrochromic windows show reasonably good
savings in Chicago and New York, but less so in Houston and Sacramento - there may be
an error in the Sacramento simulation that is causing its very poor performance, but the
Houston case could possibly be explained by the Base1 configuration being particularly
well-suited to the Houston climate but less well-suited for the Chicago and New York
climates, and/or that the Chicago-based control lookup table could not be well applied to
the Houston case but it could be to the New York case.

For the external Venetian blinds South cases, the annual lighting + cooling savings are
in the range of -0.3% to 4.8% when using the lookup table for both shading and cooling,
and in the range of 2.4% to 7.3% when using the lookup table for the shading position
and an online optimization for the cooling. For the external Venetian blinds West cases,
the savings are in the range of -0.3% to 0.3% and 1.7% to 3.0%. For the internal Venetian
blinds South cases, the savings are in the range of 0.2% to 0.9% and 2.2% to 3.6%. For the
electrochromic South cases, not counting the questionable Sacramento results, the savings
are in the range of -1.0% to 3.7% and 2.0% to 6.7%.

Figure 36: Comparisons of annual energy graphs
Ext. Ven. blind, South, Chicago lookup Ext. Ven. blind, West, Chicago lookup
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Figure 37: Comparisons of annual lighting + cooling savings graphs
Ext. Ven. blind, South, Chicago lookup Ext. Ven. blind, West, Chicago lookup
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Table 11: Summary of annual lighting + cooling percent savings versus Base1
Chicago New York Houston Sacramento

External Venetian blinds, South lookup 2.6 3.5 -0.3 4.8
luOptCool 5.8 6.5 2.4 7.3

External Venetian blinds, West lookup -0.2 0.3 -0.3 0.1
luOptCool 2.3 3.0 1.7 2.5

Internal Venetian blinds, South lookup 0.2 0.9 0.3 0.5
luOptCool 3.5 3.6 2.2 2.9

Electrochromic windows, South lookup 3.3 3.7 -1.0 -9.7
luOptCool 6.6 6.7 2.0 -4.9
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5 Discussion

5.1 Annual simulation results

The annual simulation results are showing somewhat lower energy savings with optimization-
based integrated control than one may have hoped or expected. Some of this may be
because there is less savings potential inherent in the problem than one may have hoped,
but some may also be because of imperfections in the methods or their implementation.
There are reasons to suspect that there may still be minor bugs in the implementation
(the annual electrochromic results in Sacramento and the Houston-based lookup table for
South-facing external Venetian blinds both suggest there might still be problems left to
fix), but it is unexpected that the majority of the optimizations and simulations are in
error - their results relative to one another generally make sense.

The process using offline optimization to calculating a control lookup table rather than
using online optimization directly in real-time does result in a decrease in performance
because of the conditions parametrization and lookup table interpolation (in the case stud-
ies in [Coffey, 2011] this performance loss ranged from roughly 10-40%). Estimating the
extent of this performance loss in this case could be done by simulating particular weeks
or months with online MPC. Interrogating the results of this comparison could also be
used to determine how best to refine the control lookup table grid for better performance.
It is expected, however, that the results with online optimization would be only slightly
better than the results of the ‘luOptCool’ annual simulations, which used online optimiza-
tion for the cooling part of the problem - the performance difference between the ‘lookup’
case and the ‘luOptCool’ case is likely greater than the performance difference between
‘luOptCool’ and full-online-optimization would be. It seems reasonable to assume, then,
that a full-online-optimization case for South-facing external Venetian blinds in Chicago
(compared to the ‘lookup’ savings of 2.6% and the ‘luOptCool’ savings of 5.8%) would
show annual cooling + lighting savings of somewhere between 5.8% and 9.0% over the
base case. Improvements to the control lookup table (e.g. a more refined grid) would
also bring some improvements within this range, while still getting the practical benefits
of the lookup table. More significant improvements in either the online optimization or
lookup table versions may be possible with a higher precision in the shading optimization,
as discussed below.

The question of how much higher the savings could be with closer-to-optimal control
is thus a difficult question to answer, but it is expected that they would be no more than
double the savings shown in the ‘luOptCool’ case. In terms of practical implementation
though, only small improvements on the results shown herein would be expected through
refinements to the controller.
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5.2 Methods

5.2.1 Possible refinements to the controllers

As noted above, refinements to the conditions grid could produce better control perfor-
mance. However, the biggest improvements at this point would likely come from the use
of a more precise optimization for the shading control. The results shown above are for a
precision of just 0.25, which is just 5 possible positions of the shade. Increasing the op-
timization precision, however, would add computational expense to an already expensive
computation. One approach might be to use a higher precision for the shading control
only for the first few hours of the prediction horizon (likely only for the controller timestep
length), and keeping the lower precision for the remaining variables.

5.2.2 Automating the methods for further studies and/or for market imple-
mentation

With an eye to automating these methods as much as possible, both to facilitate the analysis
of various systems and climates in this project, and to make the process more feasible for
other researchers and/or building designers, the overall methods may be described from a
user’s perspective as illustrated in Figure 38.

Figure 38: MPC tool vision

To Do After Summer 2012

•Complete the mapping of savings potential for North American climates
•Add more cases to the “no sig. thermal mass” type
•Study “active mass in façade” examples
•More extensive coverage of climates

•Get tools into hands of more researchers, designers and product developers
•Develop user interfaces (both scripting-based and graphic-based) to allow user to develop optimization-
based control lookup tables given their building / system model, with a minimum number of steps and the
details (of the optimization and the reduced-order calibrations, etc) encapsulated such that they need not
deal with them if they do not want to

model

•Use these tools to develop more innovative façade-lighting-HVAC systems
•Given our map of savings potential, identify promising areas for system design and development
•Work with building designers and product developers on case studies in these promising areas

identify control variables,
conditions variables, and
objective function outputuser interface

behind the scenes
reduced order model

(if necessary)
offline

optimization

near-optimal
control lookup

table

visualization and
implementation

tools

Within the generic scheme shown in Figure 38, there may be a library of reduced-order
models, each applicable to a different type of problem (for which the original model is too
slow-running for the control optimization problem given).

Given the calibrated model, it can then be put through the process of conditions grid
definition and solution, producing the desired control lookup table. Having gone through
the whole process with the case studies, it is now largely automated, and since only the
parameter values of the the calibrated model change between cases and all else remains the
same, it should be easy to replicate the process for other cases. A few additional scripts
could also help to decrease some of the handling between steps.
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5.3 Other fenestration and HVAC systems to consider

The types of fenestration and HVAC systems to which MPC can be applied include at least
three broad categories:

1. configurations without significant thermal mass (e.g. the NY Times case study)

2. configurations with significant thermal mass in the building and/or HVAC system but not in the
facade system (e.g. the case studies herein)

3. configurations with significant thermal mass within the facade system, with or without significant
mass in the rest of the building or HVAC system

Type 2 is of particular interest, as it includes a variety of market-available systems,
including internal and external shades, electrochromic glazing, other complex fenestration
systems, night-flush natural ventilation and massive-slab radiant cooling, and it is more
likely than Type 1 to show significant savings potential with MPC. Some of these config-
urations have been considered herein, others could be relatively easily considered through
extensions to the model and methods used herein. The study of Type 3 is more exploratory,
searching for significant savings potential that could bolster the development of new com-
ponent facade technologies - it could include external blinds with facade-embedded phase
change materials or thermal mass between layers of variable insulation.

5.4 Further research

• Complete the mapping of savings potential for North American climates

• Add more cases to the ‘no significant thermal mass’ type

• Study examples of active mass in facade

• More extensive coverage of climates

• Get tools into hands of more researchers, designers and product developers

• Develop user interfaces (both scripting-based and graphic-based) to allow user to
develop optimization-based control lookup tables given their building / system model,
with a minimum number of steps and the details (of the optimization and the reduced-
order calibrations, etc) encapsulated such that they need not deal with them if they
do not want to

• Use these tools to develop more innovative fenestration-HVAC coupled systems

• Given the map of savings potential, identify promising areas for system design and
development

• Work with building designers and product developers on case studies in these promis-
ing areas
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6 Conclusions

Methods for near-optimal integrated control of operable facades and thermally-massive
radiant slabs have been developed. The methods are now mostly automated and can
be automated further. The underlying model allows for the consideration of fenestration
systems of any arbitrary level of complexity. Initial annual simulation studies with exter-
nal Venetian blinds, internal Venetian blinds and electrochromic windows, coupled with
radiant cooling systems, show modest energy savings, generally in the range of 2-6% of
the combined cooling and lighting energy. Further refinement to the controllers may pro-
duce slightly better performance, but it is expected to be bounded within the range of
5-10% for these fenestration systems coupled with radiant cooling. The relatively modest
savings potential, however, could be offset by the relative ease with which the methods
could be automated and used in practical implementations, with the control lookup table
used both within design simulation and within the physical implementation. The methods
may also be applied to a variety of other types of fenestration-HVAC coupled systems;
further investigation may uncover more significant savings potential with more innovative
fenestration-HVAC systems.
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